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ABSTRACT

Three different kinds of base material of varying base thicknesses
were tested at the Washington State University Test Track on Ring #3
during the fall of 1967 and the spring of 1968. Twelve 18-foot test
sections consisting of 4.5, 7.0, 9.5 and 12 inches of untreated
crushed rock surfacing top course base; 3.0, 5.0, 7.0 and 9.0 inches
of emulsion treated crushed surfacing top course base; and 0.0, 2.0,
3.5 and 5.0 inches of special non~fractured screened aggregate asphalt
treated base, covered by a uniform 3.0-inch thick Class '3" asphalt
concrete wearing course were tested during this periocd. The pavement
structure was built on a clay-silt subgrade soil.

Instrumentation consisted of moisture tensiometers, strain gages,
pressure cells, LVDT gages and thermocouples for measuring moisture,
strain, stress, dynamic deflections and temperatures. Benkelman beam
readings were taken.

The testing period revealed that the fall failure modes were
different from the spring failures. The fall failure pattern started
from transverse cracks in the thin sections which developed into
alligator cracking patterns. These cracks appeared after a period of
cold weather and heavy rains followed by a warming trend. It seems
that thermal and mechanical loads were responsible fox thg fall
failures on the thin sections. The spring failures were very rapid and
sudden and were due to environmental factors which led to saturated sub-
grade, thus resulting in poor bearing capacity. Punching shear was

the failure mode. The thickest sections survived without cracks but
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developed severe rutting. Examination revealed that these ruts extended
into the subgrade and that fatigue cracking was developing on the bottom
of the bases.

Comparison of the results with those obtained from Ring #2, which
was similar in base materials and thickness, show that they were similar
in many respects. This indicates that the test track is capable of
replicating results and is a reliable research instrument.

Equivalencies were developed for the different materials. On this
basis the special aggregate asphalt treated base was superior to the
emulsion treated and untreated crushed rock bases in that order. These
results were comparable to those obtained from test Ring #2.

Maximum values for static and dynamic deflections, strains and
stresses for different times and temperatures were developed. The
lateral position of the dual tires with respect tc the gage severely
affected the strain, stress and deflection values. Temperature also
caused variations in the measurements.

Spring instrument readings for static and dynamic deflections, strain
and stress show increased values by as much as 2 to & times of those
obtained in the fall. Spring subgrade conditions probably are responsible
for these differences.

Ring #3 series operational time was twice that of Ring #2 and sustained
four times the wheel load applications., Construction and‘testing environmental
conditions were superior to those for Ring #2 and hence contributed to
the longer test period. This points out that environmental factors are

very important in pavement life.

xiidi



EXPERIMENTAL PAVEMENT RING NO. 3

INTRODUCTION

Experimental pavement Ring No. 3 was the second of three rings built and
tested in a continuing pavement experiment designed to test bases constructed
from different materials varying in thicknesses in order to study their
strengths and determine their relative equivalencies. This ring was the
first of two rings built under contract Y-993, which is a continuation of
contract Y-651.

Each ring consists of 12 sections constructed from three different base
materials, which are subdivided into four sections of varying base thickness.
Crushed rock base is used as the standard control for comparison purposes.

The three rings, under contracts ¥-651 and Y-993, were to be comstructed
during the summer and tested under different environmental conditions.

Rings #2, #3 and #4 were constructed during the summers of 1966, 1967 and
1968 respectively. Ring #2 was tested the fall of 1966 and spring of 1967,
Ring #3 the fall of 1967 and spring of 1968, and Ring #4 the fall of 1968
and the spring of 1969. The results from Ring #2 were published as Highway
Research Publication H-29 (1)*, The following results from Ring #3 are
tentative and subject to modification upon evaluation of results from all
the rings.

The construction, testing and experimental results are described in this
report. The data obtained from this ring will be used along with data from
other rings to obtain an overall evaluation of test track testing and for
theoretical analysis of the results, which hopefully will lead to a better

understanding of pavement systems and materials,

“Figures in parenthesis refer to specific reports in the References.



This project was conceived and initiated by the Highway Research Section,
College of Engineering Research Division, Washington State University.
Financing is a joint undertaking among the University, the Washington
Highway Department, the Bureau of Public Roads of the Federal Highway Adminis-
tration, Department of Transportation, as a HRP federal aid research project,
and The Asphalt Institute, which provided professional guidance in design

planning and in evaluation of results,
EXPERIMENTAL DESIGN

The success of Ring #2 showed that it was possible to use twelve 18-foot
test sections separated by 3.7-foot tramsition zones withian the 260-foot
centerline circumference test track limits with a minimum of boundary condi-
tions. This division permits testing of three base types of four thickness
levels in any one-ring experiment. The inclusion of several thicknesses of
each base type was considered necessary for proper evaluation of the
performance of several base types. The degree of thickness was chosen to
provide estimated pavement lives from several hundred up to two million
wheel load applications of 10,000 pounds. The actual load per set of duals
is 10,600 pounds.

The subgrade, surfacing and other variables were kept constant, while
base types and thicknesses were varied. A subbase was not used so as to
keep the pavement layers at a minimum and to simplify the analysis of the
theoretical system.

Although a random distribution of base types of varying thicknesses might
have been preferable (2), sections of the base type were grouped to facilitate

construction with standard construction equipment.



The materials and bases in Ring #3 were similar to those in Ring #2; the
two changes being 1) that section bases were rotated 120 degrees to try to
eliminate the effects of boundary conditions and any subgrade differences,
and 2) the thickest section of the special aggregate asphalt treated base
was eliminated and replaced with one of zero thickness. This was done to
achieve failures in all sections. Ring #3 had the same materials and bases
as Ring #2 which was a change from original plans and was due to the fact
that the behavior of the emulsion treated bases and some of the other bases in
the fall in Ring #2 were unexpected, hence it was decided with the sponsors
to duplicate Ring #2 in Ring #3 and see if the results would change.

The location and dimensions of the pavement sections of Ring #3 are
shown in Figure 1. Table 1 lists the base types, sections and thicknesses.
The thicknesses of the sections and transition zones are shown schematically
in Figure 2., Figure 3 shows the typical cross section of pavement structure.

The subgrade soil, Type A-6 (10), was common to all sections.

Materials

Subgrade

The subgrade soil, a clay-silt A-6 (10) knmown as Palouse silt, was the
same type as used in Rings #1 and #2 and is described in detail in the first
part of these reports (3,1). Soil moisture-density curves are shown in
Figure 4 and Table 2. ‘Characteristics and classifications are shown in
Table 3. Further results of tests done by The Asphalt Institute are in
Table & (4), and show that test results obtained by WSU and The Asphalt
Institute are similar. Some of the soil came from the contractor’s local

pit and the curve is also shown in Figure 3. The slight difference in density
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FIGURE 1, ©PERMANENT STRUCTURES AND PAVEMENT SECTIONS
TEST RING NO. 3
TABLE 1: TYPES, SECTICNS AND THICKNESSES OF RING #3
f Type of Base Sections Thickness Levels--Inches |
é A B C D
; Crushed Surfacing Top Course 5-8 4.5 7.0 9.5 i2.0
' Emulsion-Treated Top Course 9 - 12 3.0 5.0 7.0 9.0
é Special Aggregate
Asphalt Treated 1 -4 0.0 2.0 3.5 5.0
Wearing Course--
Class "B" Asphalt All Sectioms 3.0

Highway Research Section

Washington State University
May 1969
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FIGURE 4, DENSITY - MOISTURE CURVES
{Subgrade Soil Characteristics)
115 | B Line of
Zero Air Voids
(G = 2.73)
i Legend: Subgrade material
§ 110 Test Track Site: -
o . United Paving: &
]
£
2
Note: Standard Proctor
B Test used: ASTM -
& D 698 - 57T A
@ 105
L3
gk
L]
>
e
9
§
A 100 /
& /
95 ¥ i T ¥
10 15 20 25 30
Moisture Content %
TABLE 2: OPTIMUM DENSITY AND MOISTURE
FOR SUBGRADE MATERIAL
4 Max. Optimum
Source Dry Density | Optimum Moisture
Test Track 108.8 18.8
United Paving 107.8 18.8
TABLE 3: SOIL CHARACTERISTICS AND CLASSIFICATION
. Specific | Liquid | Plastic| Plasticity} Highway Res.,} Airfield
Soil Gravity | Limit{ Limit Index Board (Class. Classifi~
S.G. L.L. P.L, P, L. cation
Clay-silt 2.73 34.9 20.2 14.7 A - 6 (10) CL
{
Stabilemeter "R" Value = 16

pH Factor 6.1



FIGURE 5.
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COMBINED GRADATION CURVE FOR CRUSHED SURFACING TOP COURSE
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TABLE 4: CALIFORNIA BEARING RATIO (CBR) TEST ON
PALOUSE SILT SUBGRADE SOIL

i
i

Water Dry CBR Swell Water Content
Content Density After Soaking
(%) {ib./cu.ft.) (%) (%) (%)
SERIES 1
13.0 105.1 4.6 2.4 20.2
16.4 108.0 9.2 G.8 18.9
19.3 105.8 2.8 0.3 19.¢9
SERIES 2
13.0 114.0 13.5 1.5 i6.4
16.4 112.5 7.5 6.5 7.3
19.3 106.6 2.2 0.4 i9.6
NOTE: Specimens soaked 4 days, 10 1b. surcharge weight.

Series 1 compaction: 10 1b., hammer, 18 in. dropé
5 layers, 12 blows per layer (12,200 ft.-1b./ft.”)

Series 2 compaction: 10 1b. hammer, 18 in. drop3
5 layers, 29 blows per layer (26,400 ft.-1b./ft.”)

{After Kallas)
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may be attributed to a difference in the clay contents of the two silts or
to testing variance.

Crushed Surfacing Top Course

The basaltic aggregate, hauled from United Paving's Ceiger Pit in
Spokane, where it was stockpiled from the previous year, just met Washington
State Highway specifications (5) for crushed surfacing top course. Sampling
was difficult due to segregation in the stockpile in Spokane. This rock was
used for the untreated bases in sections 5 to 8 as standard control and for
the emulsion treated base aggregate in secticns 9 through 12. Figure 5 shows
the gradation curve for this aggregate. Figure 6 represents the maximum
density curve which can be obtained with this aggregate.

Special Screened Non-Fractured Aggregate

This aggregate was specially blended at the Fort Wright site of Central
Pre-Mix of Spockane under the supervision of Washington State Highway personnel.
The coarse aggregate came from the Fort Wright gravel pit and the fine aggre-
gate from their Mead sand pit. This blended aggregate was trucked to Pullman
in the summer of 1966 and stockpiled at the test track site for use with
asphalt cement for the special asphalt treated bases in Ring #2, sections ¢
through 12 (1), and Ring #3, sections 1 through 4 (6).

It is a river-run gravel and contains less than 5% freshly fractured
surfaces. Figure 7 shows the gradation curve for this aggregate., Figure 9
{photo) shows its appearance and size. Although this type of aggregate is
scarce in Eastern Washington, it is prevalent on the west side of the state.
Since good aggregate is becoming scarce in the populated western areas of the
state, the highway department wants to make use of more readily available

glacial gravels--and therefore, has included them for study as base aggregates.
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FIGURE 7. GRADATION DESIGN CURVE
SPECIAL ASPHALT TREATED BASE

0 = - 100
Washington State
7 Highway Department
20 - Mix Design / . 80
Asphalt Content y /
T 3.0% o / 1
40 - / . 60 ¥
/
- // - c;g
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80 - . 20
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#200  #40  #10 /6 i/2v 2v
Sieve Size
FIGURE 8. COMBINED GRADATION CURVE
FOR CLASS "B ASPHALT CONCRETE - ALL SECTIONS
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FIGURE 9. THE APPEARANCE OF THE SPECIAL SCREENED NON-FRACTURED AGGREGATE
AT THE TEST TRACK STOCKPILE.

[REERRR SR L CaRE TN goo s 3 '

FIGURE 10. THIS SHOWS THE APPEARANCE OF THE SUBGRADE AFTER RING #2

PAVEMENT WAS REMOVED. NOTE THE TIRE TRACKS INDICATING
THE SATURATED CONDITION OF THE PALOUSE SILT.
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Asphalt Concrete Class “B'" Aggregate

This aggregate came from United Paving's Pullman pit and was blended to
meet Washington State Highway specifications (5). It is a basalt rock similar
to the crushed surfacing top course. The combined gradation curve is shown

in Figure 8 and in Table 8.

Construction

Pre-Conditioning

When the old test pavements of Ring #2 were removed, the subgrade was
found to be non-uniformly wet., Moisture contents varied from section to
section as shown in Table 5. The moisture content was found to be above
optimum in most sections, and some were at a saturated level. The contractor,
United Paving, Inc., excavated the subgrade to the 110-foot elevation and
tried to dry it so that specified compaction and moisture levels could be
reached. This proved to be unsuccessful. Figure 10 shows the appearance
of wet subgrade. Other methods, such as scarification, were tried to obtain
compaction and uniform moisture without success.

A work order arrangement was agreed upon with contractor which called for
excavation of the subgrade to elevation 108 feet and where needed, to further
excavate the non-uniform subgrade areas, The subgrade was excavated to the
108 .foot elevation. Non-uniform spots were found in sections 10-11, 1-2-3,
and 5-6 and were excavated to 106-,105- and 107 -foot elevations respectively.
At these elevations, the subgrade was found tc be uniform in moisture., New
silt material was used to build up the subgrade to the L08-foot elevation. A
10-ton, 9-pneumatic rubber-tired roller was used for compaction, which was
checked by nuclear density equipment. This work order cost $3,802.07 and

caused a delay of over a month.



TABLE 5:
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SUBGRADE MOISTURE CONTENTS

DURING PRECONDITIONING

Average
Section Moisture Content Remarks
%

1 20.2

2 23.2

3 20.0

4 20.4

) 38.36 Just Below Base

(Approx. 1% thick

9 21.2 layer)

10 23.8

11 23.5

12 22.4
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Subgrade

The subgrade was brought up in 6-inch 1lifts loose depth, watered when
necessary, and compacted with a pneumatic rubber~-tired roller and a steel
vibratory roller. The moisture contents and densities were checked by
nuclear density equipment. The weather during this period was sunny and
the temperature was in the high nineties., The silt subgrade was compacted
on the dry side rather than at optimum moisture levels because the narrow
moisture density range restricted the workable compaction levels. Each
section of the subgrade was brought up to rough final grade, blue tops
placed, then each section cut and filled to final grade.

A Huber blade was used for cutting and spreading silt to final grade.

Much handwork via shovel and hand screeding was required to bring the sections
to the desired elevations. A straight edge and rod and level were used to
check final grade and elevation to a rigid + % inch tolerance. The appearance
of subgrade at final grade is shown in Figure 11, Table 6 shows the subgrade
density and moisture achieved prior to instrumentation. The subgrade was

ready for imstrumentation at the end of July.

Crushed Surfacing Top Course Base - Untreated (Sections 5-8)

On the morning of August 4, two 4~inch lifts of crushed surfacing top
course were laid with a Blaw-Knox paver starting from the deepest base
section 8 and working towards the shallow base section 4 (see Figure 12).
The crushed rock source came from United Paving's Geiger pit in Spckane, and
was processed at their Pullman plant and hauled to the tést track site., The
rock contained 8.91% moisture when laid. Each 1ift was compacted with a
steel-faced roller. About 12 complete passes on each 1lift were needed to

obtain the specified demsity. A third lift was laid in the afternoon and
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TABLE 6: DENSITIES OF SILT SUBGRADE
AT FINAL GRADE
Dry Moisture Per Cent of Per Ceggwé%“”””
Section Density Content Maximum Optimum
ibs./cu.ft, % Density ¥ Moisture Content®
1 109.1 14.3 102.0 75.3
2 101.6 15.0 95.0 78.9
3 109.8 14,5 102.6 76.3
4 103.0 14,3 96.3 75.3
5 106.3 16.5 99.3 36.8
5 104.4 15.2 97.6 80.0
7 105.4 15.2 98.5 80.0
8 i04.6 13.7 97.8 72.1
9 101.6 15.0 85.0 78.9
10 106.6 15.0 99.6 78.9
11 105.8 14.0 98.6 73.7
12 107.1 14.9 100.1 78.4
Average 105.4 14.8 98.5 77.9

Maximum Density = 107 1bs./cu.ft.

*Standard Proctor Test used:

Optimum Moisture Content = 19%

ASTM - D698 - 57TA




FIGURE 11, THIS SHOWS THE APPEARANCE COF THE PALOUSE SILT SUBGRADE
AT FINAL GRADE. NOTIE THE TRANSITION ZONE. 1IN THE
FOREGROUND, INSTRUMENTS HAVE BEEN PLACED ON TOP OF THE

SUBGRADE PRIOR TC PLACEMENT OF BASE MATERIAL.

FIGURE 12. THE CRUSHED SURFACING TOP COURSE BASE IN SECTION 8 IS
BEING 1AID DOWN WITH A& BLAW-KNOX PAVING MACHINE.
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compacted. These sections were later fine graded with hand labor. An average
density of 144.9 1bs./cu. ft. was obtained using nuclear equipment; this
density was 106.5% above laboratory demsities.

Emulsion Treated Base (Sections 9-12)

The crushed rock used with SS5-Kh emulsion was the same material as used
in the untreated bases. Construction of the emulsion treated base began on
August 4. Checks on the aggregate prior to mixing indicated it had 4.3%
moisture. An additional 2.5-3.0% moisture was added during mixing to bring
the water content up to that determined as necessary to achieve good coatiag.
The aggregate was brought into the pugmill untreated, and then water and
bitumals were added to the mixing pug using calibrated 5-gallon cans. The
water was mixed with the aggregate for approximately 30 seconds, followed by
the emulsion which was mixed for an additional 45 seconds. It was a dry mix
and contained 6.64% water and about 9.0% total fluids. The batch proportions
at the contractor’s plant are shown in Table 7.

The first 1ift of 2-3/4" thickness was laid in Section 12. Time was
11:10 a.m., August 4. The mix looked dry. Three complete passes with the
pneumatic roller were made within 2 hours as shown in Figure 13. One complete
pass covers the whole 10-foot width. The relative dry density was 134 1b./cu.
ft. One additional pass increased the relative dry demsity to 136 1b./cu. ft.
No shoving or displacement of the mix was observed--except along the edges
due to lack of lateral support. During the placement of the first 1lift rolling
was delayed up to one hour to facilitate removal of excess water. Later lifts
were rolled almost immediately with no adverse effects.

A tack coat of 4:1 SS-Kh was broom applied between each 1ift to insure

proper bond due to the roller tracking silt from the subgrade onto the treated



base. The next 1ift of 2-3/4" thickness was laid down at 2:15 p.m. with the
air temperature being 90%°F. At 3:50 p.m. the steel roller was used to compact
the edges which were unsupported. Afterwards the base was compacted by a
pneumatic rubber-tired roller.

On Monday morning, August 7, at ¢ a.m., a final 2-3/4" 1ift was laid on
a tacked surface. At 11:48 a.m. this 1ift was compacted with a pneumatic
rubber-tired roller. A total of 5 complete passes was made on the £inal lift
with a final dry density of 140.4 1b./cu. ft.

Special Asphalt Treated Base (Sections 1-4)

This aggregate was the same as that used in sections 9-12, Ring 2, and
has less than 5% fractures. riginally this rock came from the Spokane area
and was stockpiled at the test track site. The material was hot mixed in the
pu mill with 3.0% 60-70 penetration asphalt in 3,000 1b. batches. This was
placed in three 1ifts on August 7. The temperature of the laid mix was
2920F, and at the start of compaction 250°F. A steel roller was used for
compaction; this is shown in Figure 14. The relative demsity obtained by
nuclear equipment was 143.5, which is 96.6% of optimum laboratory density.

The contractor's crew had difficulty in obtaining close tclerance of
grade and some cutting and scraping was necessary Lo cbtain the proper
thickness, thus giving parts of the base surface a rough appearance.

Class "B'" Asphalt Concrete Wearing Course (All Secticns)

Thermocouples, pressure cells, extensiometer strain gages, and strain
gages were placed on the base. Then a tack coat was sprayed.

A change in the specifications was agreed upon; this called for the
changing of the asphalt cement penetration grade from 85~100 to 60-70. This

was done to prevent contamination of the asphalts in the plant tank. The
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TABLE 7: EMULSION TREATED BASE BATCH PROPORTIONS

Description
(2000 1b. Wet Weight Batches) Percentage Pounds
Bin #1 (-1/4') 60 1200
Bin #2 (1/4"-3/8") 22 440
Bin #3 (3/8"-5/8") 18 360
Amount of S5-Kh 5 100
Water Added 2.5 25
TABLE &: DENSITIES OBTAINED FROM CORES1
AND NUCLEAR GAGE
Section Type Thickness Density Nuclear | % of Lab
In. ib/cu. ft. Density Density
4 Total 8.4 149.1 -—- --
CL 3B 3.1 152.3 153.5 98.9
ATB 5.3 143.5 143.2 96.6
1
i 8 Cl B 3.1 151.0 151.0 98.C
u cl B 3.0 149.1 152.0 96.8
12 S 3.1 149.8 147.5 97.3
- ci B - 153.1 - 99.4
10w ¢l B — 153.3 - 99.5
i :
1

The 4" diameter cores were taken outside the wheel path.

#Core diameters from these sections were 1-1/4" drilled for LVDT gages.
The other core diameters are 4. Both were drilled by Pittsburg Testing

Lab of Spokane.
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FIGURE 13, THE EMULSION TREATED BASE IS BEING COMPACTIED WITH A
PNEUMATIC RUBBER-TIRED ROLLER. NOTE THE SURFACE
HAS A TIGHT COMPACTED APPEARANCE.

FIGURE 14, THE SPECIAI ASPHALT TREATED BASE IN SECTION 2 IS BEING
COMPACTED WITE A STEEL ROLLER. NOIE THE TRANSITION
ZONE FEATHERING INTO SECTION 1.
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aggregate used came from the United Paving's Pullman pit, hence requiring
the use of a higher asphalt content. Extraction of samples showed the
average asphalt content to be 6.1%.

The hot mix was laid on August 14 in two 1lifts with a tack coat between
each 1ift. The wearing course was compacted by a steel and pneumatic-tired
roller. Densities were checked by nuclear methods as shown in Figure 15.
Cores were taken and Table 8 shows the densities and thicknesses achieved.
Shoulders

Shoulders of crushed surfacing top course aggregate were put in place
after all instrumentation was put in. The shoulders were compacted to
specifications and then a water proofingbtack coat was spraved on the
inside shoulders and ditch.

Comments

The contractor encountered problems in scheduling of his equipment and
men resulting in delays in the finishing of the subgrade, laying of bases,
wearing course and shoulders., The weather during August was continually hot
and dry. During the period from July 17 to the end of September, rain fell

only once and that only for a short interval.

Instrumentation

Instruments to measure stresses, strains, temperatures, dynamic deflection,
and moisture were installed in the different layers of the pavement structure
in similar positions used in Ring #2 and the San Diego County Experimental
Base Project (7). Figure 16 shows the depth and location of some of the
instruments in one section; Table 10 shows the type of instrumentation

installed and their location in various sections,
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TABLE 10: LOCATION OF INSTRUMENTS
ALONG CENTER LINE
Subgrade Base Surface
Type of Below On Top On Top On Top
Instrument Sections Sections Sections Sections
Moisture Probes 2,3%,4,69, - - -
7,9,109,11
WSU Cell -- 6,8 - --
S.G.Pressure Cell - 3,6,8,10, -— -
12
Thermocouples 1-12 1-12 1-12 1-12
Strain Gages® - 3,6,8,10, 3,4,6,8, 1-12
12 10,12
rvpr® .- - - 3,6,10,12

2 1n sections 3, 6 and 10 three moisture probes were installed.

b The strain gages were installed im pairs;

direction of travel and the other transverse.
installed except on the surface.

one longitudinal to the

Spares were &lso

€ Opne shallow and one deep LVDT was installed in these sections.
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FIGURE 15. THIS SHOWS THE MEASURING OF DENSITY OF THE FIRST LIFT
OF CLASS "B" ASPHALT CONCRETE WEARING CCURSE IN
SECTION 1. TEE EDGES HAVE TC BE HAND TRIMMED DURING
ROLLING TO PREVENT EDGE BREAKDOWN,
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All the instruments, with the exception of the thermoccouples, meisture
probes, and the WSU pressure cells, were wired into an amplifier, manual
switching panel and recorder. The other instrument readings were taken
visually and recorded manually. Rebound deflection measurements were
measured with a Soiltest Benkelman beam.

Measurement of Moisture

Nuclear methods were used to measure subgrade moisture during construction.
To monitor the quantity and direction of movement of water in the subgrade,

14 moisture tensiometer probes were installed. The principle behind the
tensiometer is that there is moisture tension between soil particles which
causes soil suction. The tensiometer consists of porous ceramic cups which
are filled with water and are attached by long capillary-like copper tubing
to a Bourdon dial gage. As the surrounding soil dries out, tension within
the water film draws the water from a porous cup, thus creating a suction
which registers in centibars on the Bourdon gage. A dry soil is indicated
by high gage readings and vice versa,

Laboratory calibrations and work by other researchers on the use of this
soil moisture probe indicate that these probes have a hysteresis effect (8);
one curve for the drying cycle and another for the wetting cycle. In the field
this becomes a problem of using the correct curve. The test track subgrade
was on a wetting cycle as the subgrade was on the dry side during construction.

Prior to installation, the ceramic cups were saturated for 24 hours with
de-aired distilled water. Then the ceramic probes were installed in a
vertical position in pre-wetted vertical auger~bored holes sc as to make

filling and removal of air bubbles easier. The probes were filled and purged.
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The copper leads were laid on top of the subgrade to the outside shoulders

of the track for ease of reading. Special holders were made for the 14 gages.
Readings were obtained from 12 out of the 14 gages. After the first

frost, none of the dial gages registered readings.

Temperature Measurements

Iron-constantan thermocouples: Forty-eight Pall Trinity Micro iron-

constantan thermocouples type 20-J-TF were installed in four different
positions in each section: top of wearing course, top of base, bottom of
base, and & inches below subgrade. Each conductor was insulated with
extruded Teflon with an overall imsulation of extruded Teflon. The ends

were bared, sanded clean, crimped together, fused and then dipped in a casing
full of epoxy for waterproofing. The thermocouples were then hoocked up to

a manual switch box, which was connected to a direct-reading Leeds and
Northrup potentiometer. No problems developed with this system.

Stress Measurements

WSU pressure cells: These cells were similar toc those used in Rings #1

and #2. These cells were calibrated in an air pressure chamber. These cells
were placed in sections 6 and 8 on top of the subgrade. A hole was dug in

the compacted subgrade, leveled with fine silica sand. The cell was then put
in flush with the subgrade elevation and then it was covered with a layer of
fine silica sand to protect the bed from pressure points (see Figure 17). The

system was connected to a manometer board in the tunnel.

WSU strain gage pressure cells: Seven pressure cells with strain gages

were installed in sections 3, 6, 8, 10 and 12. These pressure cells are
similar to other types of strain gage cells; their diameter is 7 inches

and 3/4 inch thick, Five were working and recording after installation.
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Calibration was done in an air pressure chamber. Installation procedure was
gimilar to that used for the WSU pressure cells, These cells were connected
to a Bruel and Kjar switching panel, a& Brush amplifier and recorder. One of
these cells was placed on top of the base in section 12. It was installed
flush with the top of the base. A hole was cut in the base to fit the cell.
Silica sand was used tec level the bottom (see Figure 17).

Strain Measurements

Shinkoh polyester SR-4 P#20 strain gages were used for the measurement
of strain. Strain gages in longitudinal and transverse positions were
installed on the surface, bases, and subgrades as shown in Table 10 and
Figure 6.

Strain gages (subgrade): Extensiometers, shown in Figures 17 and 18 were

used for installing strain gages in loose material, such as the subgrade and
crushed rock. They were installed in sectioms 3, 6, 10 and 12. The exten-
siometer design is basically the same as those used in Ring #2. More care

was taken in the waterproofing and protectionof the leads. They were placed in
a strained position and longitudinal and transverse position in the subgra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>